ГлавнаяАнкетаРекомендоватьОбратная связь

Контент

 

Общие вопросы
Типы аккумуляторов

На сегодняшний день распространены аккумуляторы пяти различных электрохимических схем никель-кадмиевые (Ni-Cd), никель-металлгидридные (Ni-MH), свинцово-кислотные (Sealed Lead Acid, SLA), литий-ионные (Li-Ion) и литий-полимерные (Li-Polymer).

Определяющим фактором для всех перечисленных элементов питания является не только портативность (т.е. небольшой объем и вес), но и высокая надежность, а также большое время работы. Основные параметры аккумулятора – это энергетическая плотность (или удельная энергия по массе), число циклов заряд/разряд, скорости зарядки и саморазряда


Ni-Cd-аккумуляторы

Безусловно, это самый известный тип аккумуляторов на рынке электронной аппаратуры. Они нашли широкое применение с середины 50-х годов. Источники питания этого типа характеризуются энергетической плотностью около 40–60 Вт*ч/кг, обеспечивают порядка 1500 перезарядок, а их скорость саморазряда составляет не более 20% в месяц (причем до 10% разряда – в течение первых 24 часов и до 20% – в первый месяц после заряда). Несмотря на довольно высокий показатель тока утечки, они весьма дешевы и хорошо зарекомендовали себя в эксплуатации. Основной их недостаток – это эффект памяти (memory effect) (смотри сноску* ), проявляющийся в уменьшении полезной ёмкости аккумулятора. Хранить эти источники питания лучше разряженными и перед каждой следующей зарядкой полностью разряжать их. Одно из наиболее важных достоинств – уверенная работа и малый саморазряд при низких температурах. Только эти аккумуляторы могут выдержать довольно длительное нахождение на морозе практически без потери полезных качеств

Ni-MH-аккумуляторы

Никель-метал-гидридные элементы появились достаточно давно. Они имеют более высокую энергетическую плотность (до 75 Вт*ч/кг) и соответственно более высокую ёмкость (примерно на 30%). С другой стороны, они дороже Ni-Cd-аккумуляторов примерно на 20% и у них меньший срок службы – всего 500 циклов заряд/разряд. Кроме того, для зарядки требуется специальное зарядное устройство, следящее за температурой и напряжением. Дело в том, что Ni-MH-аккумуляторы боятся перегрева, переохлаждения и "переполюсовки". К их недостаткам также можно отнести вдвое большее время зарядки по сравнению с Ni-Cd-аккумуляторами и большую скорость саморазряда (до30 % в месяц). Зато аккумуляторы этого типа совершенно безопасны для окружающей среды и относительно недороги. Кроме того, никель-металлгидридные аккумуляторы подвержены эффекту памяти в гораздо меньшей степени, чем Ni-Cd.

SLA-аккумуляторы
Это одни из самых дешевых аккумуляторов, характеризуются относительно невысокой энергетической плотностью – всего 30 Вт*ч/кг. Чаще всего их применяют там, где вес не является критичным параметром, а нужны большая мощность и низкая стоимость(источники бесперебойного питания, фонари, ИТД). Диапазон значений емкости для портативных приборов лежит в пределах от 1 до 30 А*час. Ранее этими аккумуляторами комплектовались некоторые ранние модели автомобильных спутниковых телефонов, но сейчас в современных мобильных устройствах они практически не применяются.

Li-Ion-аккумуляторы

Были изобретены еще в 1940 году, но промышленный выпуск начался лишь в 1991 г. Считаются одними из самых перспективных источников автономного питания, но при этом до сих пор остаются одними из самых дорогих. Они имеют высокую энергетическую плотность, порядка 100 Вт*ч/кг, и обеспечивают примерно 300–500 циклов заряд/разряд. Аккумуляторы имеют очень низкую скорость саморазряда (примерно 3–5% в первый месяц, затем уменьшение до 1–3% в месяц, дополнительно около 3% потребляет схема управления). Кроме того, при одинаковых габаритах литиевые работают втрое дольше, по сравнению с Ni-Cd-аккумуляторами, и у них абсолютно отсутствует эффект памяти. О недостатках: прежде всего – это высокая цена; эти батареи необходимо хранить в заряженном состоянии, и у них имеется эффект старения, даже если аккумулятор не используется. Он проявляется в том, что через год после изготовления ухудшается ёмкость, а через два года он иногда выходит из строя. Источники питания этого типа требуют использования исключительно "родных" зарядных устройств, а для обеспечения безопасности каждый пакет аккумуляторов должен быть оборудован электрической схемой управления, чтобы ограничить пиковое напряжение каждого элемента во время зарядки и предотвратить критичное понижение напряжения элемента при разряде. Кроме того, должен быть ограничен максимальный ток заряда/разряда, и должна контролироваться температура элемента(подробнее см. сноску** ). Также к минусам можно отнести зависимость емкости от температуры(при низких температурах время работы существенно уменьшается) .

Li-Polymer-аккумуляторы

Это одна из последних разработок в литиевой технологии. Потенциально они дешевле, чем Li-Ion-аккумуляторы, но на сегодняшний день все же остаются самыми дорогими источниками питания, несмотря на то, что уже запущено их массовое производство. Производят этот тип аккумуляторов лишь несколько крупных фирм. По конструкции они подобны своим предшественникам, но используют гелиевый электролит, поэтому могут иметь нетрадиционную форму. Эти источники обладают еще более высокой энергетической плотностью (до 160 Вт*ч/кг) и малым током разряда, причем нынешние образцы имеют очень большое количество циклов заряд/разряд – около 1000. И кроме всего прочего, эти аккумуляторы весьма компактны и легки.
Полимерно-литиевые аккумуляторы состоят из секций или стеков. Каждая из секций содержит три электрода и сепаратор с полимером, который действует как электролит и как связывающее вещество. Отрицательный электрод расположен между двумя положительными и с помощью термального воздействия все компоненты объединяют в стек. Толщина одной секции около 0,6 мм. В зависимости от количества стеков можно получить аккумулятор той или иной ёмкости. Снаружи источник питания запечатывают в полимерно-алюминиевую пленку (см. рисунки). Принципиально ионо-литиевые и полимерно-литиевые аккумуляторы не различаются, но последние имеют одно важное преимущество. Так как их рабочим веществом является гель, состоящий из смеси полимера и электролита, то утечка жидкости становится просто невозможной.


* Эффект памяти

Со временем рабочая ёмкость никель-кадмиевых и никель-металлгидридных аккумуляторов уменьшается. Это так называемый эффект памяти, т.е. источник питания отдает только заряд, полученный в ходе последней подзарядки. Он развивается при многократном заряде недоразряженных батарей на основе никеля и сильнее всего проявляется в никель-кадмиевых аккумуляторах. Рабочее вещество нового аккумулятора имеет однородную структуру из микрочастиц и наибольшую площадь активной поверхности. По мере эксплуатации рабочее вещество постепенно изменяет свою структуру в сторону уменьшения площади активной поверхности и увеличения частиц рабочего вещества (см. рис.). Объясняется это следующим образом: в момент, с которого начинается зарядка аккумулятора, в сепараторе аккумулятора образуется химическое соединение, которое мешает дальнейшей, глубокой разрядке. В настоящее время эта проблема успешно решается путем оснащения зарядного устройства функцией Refresh, действие которой сводится к предварительному разряду батареи до некоторой минимально допустимой величины емкости и последующей зарядке. Таким образом, при использовании этой функции аккумулятор всякий раз заряжается практически "с нуля".


**Метод заряда литий-ионных (Li-ion) аккумуляторов

Для заряда Li-ion аккумуляторов используется метод "постоянное напряжение / постоянный ток", суть которого заключается в ограничении напряжения на аккумуляторе. В этом он подобен методу заряда свинцово-кислотных аккумуляторов (SLA). Основные отличия заключаются в том, что для Li-ion аккумуляторов - выше напряжение на элемент (номинальное напряжение элемента 3.6 В против 2 В для SLA), более жесткий допуск на это напряжение (+ - 0.05 В) и отсутствие медленного подзаряда по окончании полного заряда.
Для примера приведем требования и рекомендации по заряду и разряду литий-ионных аккумуляторов фирмы Panasonic [1]:
· максимальное напряжение заряда 4.2 или 4.1 вольта в зависимости от модели аккумулятора;
· напряжение окончания разряда 3.0 вольта;
· рекомендуемый ток заряда 0.7 С, ток разряда (нагрузки) - 1 С и меньше;
· если напряжение на аккумуляторе менее 2.9 вольта, то рекомендуемый ток заряда 0.1 С;
· глубокий разряд может привести к повреждению аккумулятора (т.е. должно соблюдаться общее правило - Li-ion аккумуляторы любят скорее находиться в заряженном состоянии, чем в разряженном, и заряжать их можно в любое время, не дожидаясь разряда);
· по мере приближения напряжения на аккумуляторе к максимальному значению, ток заряда уменьшается. Окончание разряда должно происходить при уменьшении тока заряда до (0.1 … 0.07) С в зависимости от модели аккумулятора. После окончания заряда ток заряда прекращается полностью.
· диапазон температур при заряде от 0 до 45 градусов Цельсия, при разряде от минус 10 до 60 градусов Цельсия.
В то время как для SLA аккумуляторов допустима некоторая гибкость в установке значения напряжения прекращения заряда, то для Li-ion аккумуляторов изготовители очень строго подходят к выбору этого напряжения. Порог напряжения прекращения заряда для Li-ion аккумуляторов 4.10 В или 4.20 В, допуск на установку для обоих типов + - 0.05 В на элемент. Для вновь разрабатываемых Li-ion аккумуляторов, вероятно, будут определены другие значения этого напряжения. Следовательно, зарядные устройства для них должны быть адаптированы к требуемому напряжению заряда.
Более высокое значение порога напряжения обеспечивает и большее значение емкости, поэтому в интересах изготовителя выбрать максимально возможный порог напряжения без нарушения безопасности. Однако на величину этого порога влияет температура аккумулятора, и его устанавливают достаточно низким для того, чтобы допустить повышенную температуру при заряде.
В зарядных устройствах и анализаторах аккумуляторов, которые позволяют изменять значение этого порога напряжения, его правильная установка должна соблюдаться при обслуживании любых аккумуляторов Li-ion типа. Однако большинство изготовителей не обозначают тип Li-ion аккумулятора и напряжения окончания заряда. И, если напряжение установлено неправильно, то аккумулятор с более высоким напряжением выдаст более низкое значение емкости, а аккумулятор с более низким - будет немного перезаряжен. При умеренной температуре повреждения аккумуляторов не происходит.
Именно в этом, как правило, и заключается причина того, что аккумулятор, заряженный, например, в "родном" телефоне, работает меньшее или большее время, чем этот же аккумулятор, заряженный в настольном зарядном устройстве неизвестного производителя.
Повышение температуры аккумулятора при заряде незначительно (от 2 до 8 градусов в зависимости от типа и производителя)
Вмешательство потребителя в любое Li-ion зарядное устройство не рекомендуется.
Медленный подзаряд по окончании заряда, характерный для аккумуляторов на основе никеля, не применяется, потому что Li-ion аккумулятор не терпит перезаряда. Медленный заряд может вызвать металлизацию лития и привести к разрушению элемента. Вместо этого, время от времени для компенсации маленького саморазряда аккумулятора из-за небольшого тока потребления устройством защиты, может применяться кратковременный заряд.
Li-ion аккумуляторы содержат несколько встроенных устройств защиты: плавкий предохранитель, термопредохранитель и внутреннюю схему управления, которая отключает аккумулятор в нижней и верхней точках напряжения разряда и заряда.
Меры предосторожности: Никогда не пытайтесь заряжать литиевые батарейки! Попытка зарядить эти аккумуляторы может вызывать взрыв и воспламенение, которые распространяют ядовитые вещества и могут причинить повреждения оборудованию.
Меры безопасности: В случае разрушения литий-ионного аккумулятора, утечки электролита и попадания его на кожу или глаза, немедленно промойте эти места проточной водой. Если электролит попал в глаза, промойте их проточной водой в течение 15 минут и обратитесь к врачу.


Дата публикации: 30.01.2007
Прочитано: 18412 раз


Дополнительно на данную тему
Особенности «серых» телефоновОсобенности «серых» телефонов
Рекомендации при покупке карты памятиРекомендации при покупке карты памяти
Советы начинающим мобильным фотографамСоветы начинающим мобильным фотографам
Цифровые обозначения телефонов NokiaЦифровые обозначения телефонов Nokia
Скорости передачи данных GPRSСкорости передачи данных GPRS
Где на самом деле изготовлен Ваш мобильный телефонГде на самом деле изготовлен Ваш мобильный телефон
Информация о Bluetooth и IrDAИнформация о Bluetooth и IrDA
Типы дисплеев в мобильных телефонахТипы дисплеев в мобильных телефонах
Карты пямятиКарты пямяти
Сотовый телефон на морозеСотовый телефон на морозе
[ Назад | Начало | Наверх ]


Rambler's
Top100Rambler's Top100

Web site engine code is Copyright © 2006 by SLAED CMS. All rights reserved.